Coordination of Ti⁴⁺ and Ge⁴⁺ ions in $Na₂O-TiO₂$ -GeO₂ glasses — an approach **based on crystallization behaviour, X-ray** absorption and IR spectroscopy

KANICHI KAMIYA, TOSHINOBU YOKO

Department of Industrial Chemistry, Faculty of Engineering, Mie University, Tsu, Mie, 514, Japan

SUMIO SAKKA *Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611, Japan*

The coordination state of Ti⁴⁺ and Ge⁴⁺ ions in Na₂O-TiO₂-GeO₂ glasses has been investigated. Upon crystallization of the glasses, the thermodynamically metastable hexagonal GeO₂ crystals containing 4-fold coordinated Ti^{4+} ions together with stable $Na₄Ge₉O₂₀$ crystals containing 6-fold coordinated Ti⁴⁺ ions were precipitated. The distribution of Ti^{4+} ions between these two crystalline phases is a reflection of the coordination state of Ti^{4+} ions in the starting glass. The majority of Ti^{4+} ions are in 6-fold coordination at a small TiO_2/Na_2O ratio and they are contained in $Na_2Ge_9O_{20}$, while the majority of Ti^{4+} ions are in 4-fold coordination at a large TiO_2/Na_2O ratio and they are contained in GeO₂ crystals. Concentrations of 4- and 6-fold coordinated Ti^{4+} ions have been confirmed to be similar to that in $Na₂O-TiO₂-SiO₂$ glasses as measured by the X-ray absorption spectrometry of Ti^{4+} ions. The coordination state of Ge⁴⁺ ions in the glasses have been examined by infrared (IR) spectrometry. It is found that in Na₂O- $TiO₂-GeO₂$ glasses Ge⁴⁺ ions have 6-fold coordination preferentially, while Ti⁴⁺ ions have 4-fold coordination except at small contents of TiO₂, indicating that the addition of TiO₂ to Na₂O-GeO₂ glasses leads to the replacement of 4-fold coordinated Ge⁴⁺ ions by 4-fold coordinated Ti^{4+} ions.

1. **Introduction**

The so-called "anomaly" in glasses, that is, the occurrence of a maximum or minimum on a property-composition curve has been reported for alkali- and alkaline earth-borate and germanate systems. The cause for the anomaly is attributed to the change of the coordination state of network-forming cations, B^{3+} and Ge^{4+} ions, on addition of alkali or alkaline earth oxides [1, 2]. So far the anomaly has been extensively investigated from scientific interest, but now it is applied to design properties of practical glasses such as those for the optical wave guide $[1]$.

Glasses containing $TiO₂$, also exhibit an

anomalous change of properties with composition, although it is not so marked as in borate and germanate glasses. Accordingly, the coordination of Ti^{4+} ions has been investigated also in these glasses. Rao [3] showed that the plots of thermal expansion coefficient, density and refractive index of $R_2O-TiO_2-SiO_2$ glasses, where R is an alkali metal, as a function of $TiO₂$ content deviate from additivity. The deviation was attributed to the change of coordination state of $Ti⁴⁺$ ions with the $TiO₂$ content of the glass. He proposed that $Ti⁴⁺$ ions are in 4-fold coordination at small $TiO₂$ contents and in 6-fold coordination at large $TiO₂$ contents. Takahashi *etal.* [4] re-examined the

same problem for $Na₂O-TiO₂-SiO₂$ glasses, reaching an opposite conclusion on the change of the coordination number of Ti^{4+} ions with the $TiO₂$ content of glasses. Hanada and Soga [5] supported the conclusion of Takahashi et al. on the basis of the chemical shift of TiK β X-ray emission spectra of $Na₂O-TiO₂-SiO₂$ glasses. It was found that Ti^{4+} ions are 4-fold coordinated in binary TiO_2-SiO_2 [6] and TiO_2-GeO_2 [7] glasses. Recently, the extended X-ray absorption fine structure (EXAFS) technique $[8]$ has revealed that in $TiO₂-SiO₂$ glasses $Ti⁴⁺$ ions are in 4-fold coordination except at very small $TiO₂$ content.

It was shown that Ge^{4+} ions are also present in both 4- and 6-fold coordination in germanate glasses $[9]$. As already mentioned, the addition of alkali oxides to $GeO₂$ glass which is composed of $GeO₄$ tetrahedra produces only 6-fold coordinated $Ge⁴⁺$ ions. The maximum concentration of 6-fold Ge⁴⁺ ions of about 25% occurs at 20 mol% alkali oxides $[10]$.

Ternary $Na₂O-TiO₂ - GeO₂$ glasses are very interesting since the glasses contain two types of network-forming cations, Ti^{4+} and Ge^{4+} , which are assumed to play a dual part. So far, no works have been reported on the coordination state of Ti⁴⁺ and Ge^{4+} ions in these glasses. In the present work, structure analysis of $Na₂O-TiO₂ - GeO₂$ glasses has been made in terms of coordination states of Ti^{4+} and Ge^{4+} ions. The coordination number of Ge^{4+} was examined by infrared (IR) spectroscopy, and that of $Ti⁴⁺$ ions was determined on the basis of the crystallization behaviour of glass and X-ray absorption spectroscopy.

2. Experimental details

2.1. Glass samples

Four series of glasses were subjected to measurements. The compositions of the glasses are given in Table I. The compositions of the first and second series are represented as $(10-x)Na₂O$. $xTiO₂ \cdot 90GeO₂$, and $(20-x)Na₂O \cdot xTiO₂ \cdot 80GeO₂$ in mol%, respectively, in which $TiO₂$ gradually replaces $Na₂O$. In the third and fourth series, that is, $5Na_2O \cdot xTiO_2 \cdot (95-x)GeO_2$ and $xTiO_2 \cdot$ $(100-x)$ GeO₂ glasses, TiO₂ replaces GeO₂.

Reagent grade $Na₂CO₃$, TiO₂ (anatase) and α -quartz type GeO₂ of high purity (7 N) were used as starting materials. The 30 g batches were melted in platinum crucibles in air in an electric furnace. The melting temperature ranged from 1200 to 1500° C, depending on the composition of glass.

TABLE I Composition and peak temperature of crystallization (T_c) of the glass

Glass	Composition (mol%)			T_c (°C)
	Na ₂ O	TiO ₂	GeO ₂	
Series 1				
11	9.0	1.0	90.0	621
12	8.0	2.0	90.0	622
13	7.0	3.0	90.0	631
14	5.0	5.0	90.0	639
15	4.0	6.0	90.0	663
16	3.0	7.0	90.0	641
17	1.0	9.0	90.0	642
Series ₂				
21	18.0	2.0	80.0	609
22	17.0	3.0	80.0	623
23	16.0	4.0	80.0	620
24	14.0	6.0	80.0	633
25	13.0	7.0	80.0	639
26	11.0	9.0	80.0	651
27	9.0	11.0	80.0	658
28	6.0	14.0	80.0	689
29	5.0	15.0	80.0	666
Series 3				
31	5.0	2,0	93.0	626
32	5.0	4.0	91.0	639
33	5.0	7.5	87.5	657
34	5.0	10.0	85.0	667
35	5.0	12.5	82.5	662
36	5.0	15.0	80.0	666
Series 4				
41		2.4	97.6	
42		3.2	96.8	
43		6.4	93.6	
44		9.6	90.4	
45		12.7	87.3	

The melts were poured out onto an iron plate. Glasses were annealed at temperatures 10 to 20° C lower than the respective glass transition temperatures.

2.2. Crystallization

For crystallization powdered glass samples were heated up to a temperature 50° C higher than the crystallization peak temperatures at a heating rate of 5° C min⁻¹ and then were cooled in air. The peak temperatures were determined beforehand by differential thermal analysis (DTA).

2.3. X-ray diffraction

The species of crystals precipitated in glasses were identified by X-ray diffraction technique. Lattice constants of the crystals were evaluated from d-values of their several diffraction lines using the least-square method. For these purposes, the nickel-filtered Cu $K\alpha$ radiation was used. Reagent

grade $CaCO₃$, the lattice parameters of which were corrected with high purity silicon powders, was used as an internal standard. The fraction of precipitated crystal phase was determined from the ratio of the intensity of its most intense diffraction peak to that of the co-precipitated crystal phase.

2.4. Measurement of X-ray absorption spectrum

The X-ray absorption spectrum near the Ti K absorption edge (4972 eV) was measured with a conventional X-ray machine. An analysing crystal, LiF, was mounted at the goniometer head. The specimens for the X-ray absorption measurement were prepared as films. The powdered glass sample was mixed with ethylene dichloride-formvar solution to make a thin slurry. The slurry was dried on a Teflon strip to form a film of thickness less than 0.2 mm. The copper target tube was used as a source of white X-rays. The film was placed at the incident beam. The intensity of the transmitting X-rays was measured at 2θ -intervals of 0.05° in the diffraction angle range of 74.5 $^\circ$ to 76.5° in 2 θ . The absorption coefficient, μx , was then estimated. The details of the procedure have been reported previously [11].

2.5. IR spectroscopy

IR spectra of the glasses over the wavelength range of 400 to 1400 cm^{-1} were measured using an IR spectrometer (Nihon Bunko Co, A-202). About 1 mg of glass powders was mixed with 150 mg of dried KBr and pressed into a disk for the measurement.

3. Results

3.1. Crystallization behaviour of glasses

On heating glasses of series 1 to 3, $GeO₂$ crystal with the hexagonal α -quartz type structure and $Na₄Ge₉O₂₀$ with the tetragonal structure were precipitated. A very small amount of tetragonal $GeO₂$ was co-precipitated with these two crystals in $(20-x)Na₂O \cdot xTiO₂ \cdot 80GeO₂$ glasses with x larger than 14. Only hexagonal $GeO₂$ crystal was precipitated in $TiO₂ - GeO₂$ glasses.

The change of the lattice constants, a_0 , of the GeO₂ and Na₄Ge₉O₂₀ crystals with the TiO₂ content of starting glasses is shown in Figs. 1a, b and c for series 1, 2 and 3, respectively. The increase in the lattice constant, a_0 , of the GeO₂ and $Na_4Ge_9O_{20}$ crystals is attributed to the substitution of Ti^{4+} ions for Ge^{4+} ions. Fig. 2 shows the a_0 of $Ti_xGe_{1-x}O_2$ and $Na_4Ge_{9-x}Ti_xO_{20}$ solid solutions which were made by crystallizing glasses of the corresponding compositions. It has been confirmed that no compounds other than the hexagonal $GeO₂$ type crystal crystallize out of the former glasses, and $Na₄Ge₉O₂₀$ type crystal out of the latter glasses, as long as the $TiO₂$ -content is not too large. Accordingly, the change of a_0 of GeO₂ and $Na₄Ge₉O₂₀$ with the TiO₂ content of glass

Figure 1 Lattice constants a_0 of the hexagonal GeO₂ and the $Na₄Ge₉O₂₀$ type crystal precipitated in (a) (10-x) $Na₂O \cdot xTiO2 \cdot 90GeO₂$ glasses, (b) $(20-x)Na₂O \cdot xTiO₂$. 80Ge₂ glasses and (c) $5Na₂O \cdot xTiO₂ \cdot (95-x)GeO₂$ glasses.

Figure 2 Lattice constants a_0 of the solid solution of $Ti_xGe_{1-x}O_2$ (hexagonal GeO₂ type crystal) and $Na₄Ti_xGe_{9-x}O₂₀$ plotted against TiO₂ content.

shown in Fig. 2 is assumed to be caused by the incorporation of Ti^{4+} ions in the crystals. The saturation in the increase of a_0 of GeO₂ at about 9 mol % $TiO₂$ and $Na₄Ge₉O₂₀$ at 27 mol % $TiO₂$ indicates that the solubility limits of Ti^{4+} ions in these crystals are 9 and 27mo!%, respectively. It is clear that in GeO₂ type crystal Ti^{4+} ions replace

tetrahedrally coordinated Ge^{4+} ions. In Na₄Ge₉O₂₀, where $4/9$ of Ge⁴⁺ ions are in 6-fold coordination and 5/9 of them are in 4-fold coordination [12], $Ti⁴⁺$ ions replace only 6-fold coordinated $Ge⁴⁺$ ions. This was confirmed on the basis of the diffraction intensity change of $101, 220, 200$ and 202 lines with the content of incorporated Ti^{4+} ions. Then, the data given in Fig. 2 enable us to estimate the contents of Ti^{4+} ions in the GeO₂ and $Na₄Ge₉O₂₀$ type crystals precipitated in glasses of series 1 to 3 from the a_0 values shown in Fig. 1.

The fraction of the hexagonal $GeO₂$ and $Na₄Ge₉O₂₀$ type crystals in the crystallized glass which was estimated using the diffraction intensity is shown as a function of the $TiO₂$ content of the starting glass in Figs. 3a, b and c for series 1,2 and 3, respectively. In any of series 1 glasses (Fig. 3a), the amount of hexagonal $GeO₂$ crystal is much larger than that of the $Na_4Ge_9O_{20}$ type crystal. Glasses of series 2 with $TiO₂$ contents smaller than a few mol% give the $Na₄Ge₉O₂₀$ type crystal along with a small amount of the hexagonal $GeO₂$ type crystal. The content of the latter crystal is seen to increase rapidly around $5 \text{ mol } \%$ TiO₂. For series3, the major crystalline species is the hexagonal $GeO₂$, irrespective of the TiO₂ content.

The content of each crystalline phase and the content of incorporated Ti^{4+} ions thus obtained are assumed to give the distribution of 4- and 6-fold coordinated Ti^{4+} ions between the precipitated crystals. The fraction of 4-fold coordinated (or 6-fold vice versa) Ti^{4+} ions thus evaluated is plotted against the $TiO₂$ content of the starting glass in Fig. 4a, b and c for series 1, 2 and 3, respectively. In crystallized glasses of series I, a

Figure 3 Contents of the hexagonal GeO₂ and Na₄Ge₉O₂₀ in the crystallized glasses of compositions (a) $(10-x)$ $\text{Na}_2\text{O} \cdot x \text{TiO}_2 \cdot 90 \text{GeO}_2$, (b) $(20-x) \text{Na}_2\text{O} \cdot x \text{TiO}_2 \cdot 80 \text{GeO}_2$ and (c) $5Na₂O \cdot xTiO₂ \cdot (95-x)GeO₂$.

large part of the Ti^{4+} ions is in 4-fold coordination. Furthermore, there is a tendency for 4-fold coordinated Ti^{4+} ions to increase with increasing $TiO₂$ content of starting glasses. The majority of $Ti⁴⁺$ ions in crystallized glasses of series 2 with x of 2 to 5 are in 6-fold coordination. The fraction of 4-fold coordinated Ti^{4+} ions increases as $TiO₂$ gradually replaces $Na₂O$, being over 90% at a TiO₂ content larger than 15mo1%. The fraction of 4-fold Ti^{4+} ions in crystallized glasses of series 3 is over 90%, independent of the $TiO₂$ content.

The Ge⁴⁺ ions present in $Na₂O-TiO₂ - GeO₂$ glasses are also divided between the hexagonal GeO₂ and the Na₄Ge₉O₂₀ type crystal on crystallization of glass. The fraction of 4-fold coordinated (or 6-fold vice versa) Ge^{4+} ions determined in a, similar manner to the case of Ti^{4+} ions is shown in Figs. 4a, b and c for glass series 1,2 and 3, respectively. In series 1 and 2, the amount of 6-fold coordinated Ge^{4+} ions is seen to decrease with increasing $TiO₂$ content of glass. In series 3, however, it is 9 to 10%, independent of the $TiO₂$ content of glass.

 100°

 $1₀$ $\tilde{}$

3.2. X-ray absorption spectra near K edge of Ti⁴⁺ ions in the TiO₂-containing germanate **glasses**

Fig. 5 shows the X-ray absorption near K -edge structure (abbreviated as XANES) of Ti^{4+} ions in three reference crystals and a reference glass of the composition of $6.5TiO₂ \cdot 93.5SiO₂$ (mol%), which has been made from metal alkoxides [13]. The Ti^{4+} ions are in 4-fold coordination in Li₄TiO₄ and the reference glass and in 6-fold coordination in $TiO₂$ (anatase) and $TiO₂$ (rutile). The difference in the coordination state of $Ti⁴⁺$ ions is distinctively reflected on the XANES, as seen in the figure. The spectrum of 6-fold coordinated Ti^{4+} ions in rutile and anatase has a pronounced maximum around 20 to 30 eV, while that of 4-fold Ti^{4+} ions in $Li₄TiO₄$ and the reference glass does not show any remarkable maxima or minima but a monotonic decrease in μx in the high energy region. The spectra of Ti^{4+} ions for rutile and anatase are in fairly good agreement with those [14] previously reported, although a peak at 20 eV in the present work is less pronounced compared to the previous ones. The spectra of Ti⁴⁺ ions in $6.5TiO₂·93.5SiO₂$ glass is very similar to that [9] reported for the corresponding glass made by a melting method. The slight difference in the spectrum of 4-fold coordinated Ti^{4+} ions between Li_4TiO_4 and the glass may be due to the difference in connectivity of the TiO₄ tetrahedra. The TiO₄ tetrahedra are

Figure 4 Contents of 6-fold Ti⁴⁺ ions and 4-fold Ge⁴⁺ ions in the crystallized glasses of compositions (a) $(10-x)$ $\text{Na}_2\text{O}\cdot \text{xTiO}_2 \cdot 90\text{GeO}_2$, (b) $(20-x)\text{Na}_2\text{O}\cdot \text{xTiO}_2 \cdot 80\text{GeO}_2$ and (c) $5Na₂O \cdot xTiO₂ \cdot (95-x)GeO₂$ determined from the crystallization behaviour.

(4972eV) o٧ 40 60 8o 20 Li₄TiO₄ 10% TiO₂ 25%TiO2 A 50% TiO₂ $\bf{1}$ $TiO₂$ (rutile) t I 76.0 $\frac{1}{2\theta}$ (*) $\frac{75.0}{2}$

Figure 5 X-ray absorption near K edge structure (XANES) spectra of Ti⁴⁺ ions in (a) TiO₂ (rutile), (b) TiO₂ (anatase), (c) Li_4TiO_4 and (d) the $6.5TiO_2 \cdot 93.5SiO_2$ (mol%) glass.

isolated in $Li₄TiO₄$, while they are linked with each other three-dimensionally via $SiO₄$ tetrahedra in $6.5TiO₂·93.5SiO₂$ glass. The fine structure in the very small energy region $(0 \text{ to } 10 \text{ eV})$ which has been reported by Greegor *et al.* [9] could not be detected in the present work, because a weak emission line of tungsten (impurity element deposited on the copper target) was superimposed in that region. These differences in the present spectra from those of other authors, however, are not so serious for our purpose of determining the coordination state of Ti^{4+} ions in the glasses because the difference in the spectrum between 4-fold and 6-fold coordinated Ti^{4+} ions is remarkable. Fig. 6 shows XANES spectra of Ti^{4+} ions in mixtures of Li_4TiO_4 and TiO_2 (rutile). The systematic change of the spectrum with the composition of the crystal mixture is observed. The peak at 20 to 30eV, which is characteristic of 6-fold coordinated $Ti⁴⁺$ ions, decreases in intensity with decreasing $TiO₂$ content. The peak can be discerned even if only 10% of Ti⁴⁺ ions in the crystal mixture are in 6-fold coordination. This

Figure 6 XANES spectra of Ti^{4+} ions in the TiO₂ (rutile)– $Li₄TiO₄$ crystal mixtures with different compositions. The attached number is the mol % of TiO₂ (rutile).

makes the semi quantitative analysis of the coordination state of $Ti⁴⁺$ ions possible.

In Figs. 7a and b X-ray absorption spectra of Ti^{4+} ions in $xTiO_2 \cdot (100-x)GeO_2$ glasses and $(20-x)Na₂O \cdot xTiO₂ \cdot 80GeO₂$ glasses are shown, respectively. A spectrum for $xTiO_2 \cdot (100-x)GeO_2$ glasses with x of 9.5 is similar to $6.5TiO₂$. 93.5SiO₂ glass, indicating that the majority of $Ti⁴⁺$ ions are in 4-fold coordination. The glass with $x = 12.7$ contains both 4- and 6-fold coordinated Ti^{4+} ions. The $(20-x)Na_2O \cdot xTiO_2 \cdot 80GeO_2$ glasses with $x = 6, 9, 11$ and 14 give spectra similar to Li_4TiO_4 and $6.5TiO_2 \cdot 93.5SiO_2$ glass. Considering that the co-existence of just a small amount of 6-fold Ti^{4+} ions with 4-fold Ti^{4+} ions gives a hump at 20 to 30eV as described above, it may be concluded that the majority of Ti^{4+} ions in these glasses are in 4-fold coordination.

3.3. Infrared spectra of glasses

Figs. 8a, b and c, show IR spectra of glasses of series 1 to 3. The $TiO₂$ content of glass increases from the bottom curve to the top curve. The

Figure 7 XANES spectra of Ti⁴⁺ ions in (a) $xTiO_2 \cdot (100-x)GeO_2$ glasses and (b) $(20-x)Na_2O \cdot xTiO_2 \cdot 80GeO_2$ glasses.

intense absorption peak at 800 to 850 cm^{-1} is attributed to the Ge-O stretching vibration. In glasses of series 1 and 2, the absorption peak position is observed to shift toward the lower wavenumbers as the $TiO₂$ content decreases (or the $Na₂O$ content increases). In Fig. 9, the wavenumber of the peak is plotted as a function of $Na₂O$ content for glasses of series 1 and 2. The data for $Na₂O-GeO₂$ glasses are also shown for comparison. It is known that the shift of absorption peak is caused partly by the coordination change of some Ge^{4+} ions from 4 to 6 and partly by mere addition of $Na₂O$ [10]. As can be seen in Fig. 9, the peak shift of $TiO₂$ -containing glasses is slightly larger than that of binary $Na₂O-GeO₂$ glasses. The shift for glasses of series 3 and 4 is shown in Fig. 10 against the $TiO₂$ content. The shift of the absorption peak is relatively small in glasses of series 3, and it is scarcely observed in glasses of series 4.

4. Discussion

4.1. Coordination state of Ti^{4+} ions in gerrnanate glasses

Crystallization of glasses is used as a preliminary approach to their structure. This technique may be useful especially when thermodynamically

metastable crystals first precipitate in glasses. In that case the structure of glass is believed to be closely correlated with the precipitating metastable crystal. An example is fused $SiO₂$, which has a network structure similar to the first precipitating β -cristobalite. The addition of TiO₂ to SiO₂ glass does not change the fundamental structure. $Ti⁴⁺$ ions merely substitute the tetrahedrally coordinated $Si⁴⁺$ ions. The metastable, cristobalite type $SiO₂$ containing 4-fold coordinated $Ti⁴⁺$ ions precipitates in the $TiO₂-SiO₂$ glasses [15].

It is assumed that crystallization of glasses can be used as a means for deducing the structure of the starting glass in the present $Na₂O-TiO₂-GeO₂$ systems, because metastable hexagonal $GeO₂$ crystals precipitate, although co-precipitating $Na₄Ge₉O₂₀$ crystal is thermodynamically stable. α -quartz type hexagonal GeO₂ containing 4-fold coordinated Ti^{4+} ions is metastable in the temperature range used in the present work. Actually, the precipitated hexagonal $GeO₂$ gradually transformed into the stable, tetragonal $GeO₂$ in which $Ge⁴⁺$ ions are in 6-fold coordination on heating at higher temperatures or for longer times. In general, an ion tends to take a smaller coordination number at high temperatures. Considering that 6-fold coordinated $Ti⁴⁺$ ions would not change to 4-fold

coordinated $Ti⁴⁺$ ions in the temperature range used in crystallizing the present glasses, the presence of 4-fold coordinated $Ti⁴⁺$ ions in the precipitated hexagonal $GeO₂$ may be taken as

Figure 8 Infrared absorption spectra of (a) $(10-x)Na$, $O \cdot$ $xTiO₂ \cdot 90GeO₂$ glasses, (b) $(20-x)Na₂O \cdot xTiO₂ \cdot 80GeO₂$ glasses and (c) $5Na$, $O \cdot xTiO$, $\cdot (95-x)GeO$, glasses.

showing that they are present in the starting glasses. Furthermore, one may conclude that the amount of 4-fold coordinated $Ti⁴⁺$ ions in the starting glass is not less than that in precipitated crystals.

The results deduced from the crystallization behaviour, that the majority of Ti^{4+} ions in TiO_2- GeO₂ and Na₂O-TiO₂-GeO₂ glasses with large amounts of $TiO₂$ are in 4-fold coordination, is confirmed by examining closely X-ray absorption spectra of Ti^{4+} ions in these glasses. The spectra of Ti⁴⁺ ions in the TiO₂-GeO₂ glasses indicated that the ions are in 4-fold coordination when the TiO₂ content is kept at less than 9.5 mol%. The glass containing a large amount of $TiO₂$ (12.7 mol) % gave the spectrum indicating the coexistence of 4-fold and 6-fold coordinated Ti^{4+} ions. Correspondingly, no crystals other than the hexagonal $GeO₂$ containing 4-fold coordinated $Ti⁴⁺$ ions precipitated in the former glasses, while

Figure 9 Change of the wavenumber of the IR absorption peak due to Ge-O bonding with Na₂O content: Δ , (10-x) $\text{Na}_2\text{O} \cdot x \text{TiO}_2 \cdot 90 \text{GeO}_2$ glasses; \bullet , $(20-x) \text{Na}_2\text{O} \cdot x \text{TiO}_2 \cdot$ 80GeO₂ glasses; \circ , x Na₂O · (100-x)GeO₂ glasses.

a small amount of the tetragonal $GeO₂$ containing 6 -fold coordinated Ti⁴⁺ ions co-precipitated with the hexagonal one in the latter glass.

The X-ray absorption spectra of $(20-x)Na₂O$. $xTiO₂ \cdot 80GeO₂$ glasses with the TiO₂ content, x, larger than 9 mol% suggest that the majority of Ti⁴⁺ ions are in 4-fold coordination, semiquantitatively agreeing with the results deduced from the crystallization behaviour. It is, then, concluded that the majority of Ti^{4+} ions are in 4-fold coordination in glasses of series 2 when the $TiO₂$ content is large relative to the Na₂O content. The XANES was not applied to glasses of series 2 containing $TiO₂$ smaller than 6 mol %, because of too small a content of Ti^{4+} ions to obtain a clear spectrum with the conventional X-ray machine. On the basis of the crystallization behaviour, Ti^{4+}

Figure 10 Change of the wavenumber of the IR peak due to Ge-O bonding with TiO₂ content: \circ , 5 Na₂O \cdot xTiO₂. (95-x)GeO₂ glasses; \bullet , xTiO₂ \cdot (100-x)GeO₂ glasses.

Figure 11 Compositon region in Na₂O-TiO₂-GeO₂ glasses where the per cent of 4-fold coordinated Ti^{4+} ions is over 90, determined based on the crystallization behaviour.

ions are assumed to be in 6-fold coordination in the glasses of series 1 and 2 when the $TiO₂$ content is relatively small. For glasses of series 3, the conclusion that the majority of Ti^{4+} ions are in 4-fold coordination may be deduced from the crystallization behaviour, as well. The glass composition region where Ti^{4+} ions more than 90% should be in 4-fold coordination has been determined from the distribution of Ti^{4+} ions between precipitated crystals, and is shown in Fig. 11. The coordination state of $Ti⁴⁺$ ions in the alkali germanate glasses qualitatively agrees with that in the alkali silicate glasses $[4, 5]$, namely, 4-fold coordinated $Ti⁴⁺$ ions are incorporated into glasses when their content is large and 6-fold ones may preferably occur in glasses when their content is small.

4.2. Coordination state of Ge^{4+} ions in

TiO2-containing germanate **glasses** The Ge⁴⁺ ions in Na₂O-TiO₂-GeO₂ glasses are divided between the precipitating hexagonal $GeO₂$ and $Na_4Ge_9O_{20}$ on crystallization, as Ti⁴⁺ ions are. This gives the semi-quantitative information on the coordination state of Ge^{4+} ions in starting glasses. It has been found that the majority of Ge^{4+} ions in these glasses take a 4-fold coordination number, and 6-fold Ge^{4+} ions tend to increase with decreasing $TiO₂$ content (for increasing Na₂O) content). A more quantitative state analysis of

 $Ge⁴⁺$ ions in glasses will be made on the basis of IR spectroscopy in this section.

As already mentioned, it has been found that the shift of the IR absorption peak at 800 to 900 cm⁻¹ with Na₂O content in the binary Na₂O- $GeO₂$ glasses is ascribed partly to the change in average coordination number of $Ge⁴⁺$ ions. When $TiO₂$ is added to the GeO₂ glass, the situation is somewhat different. That is, the Ti^{4+} ions give an additional broad band at 500 to 600 cm^{-1} , if they are incorporated in 6-fold coordination. A small hump on the lower wavenumber side of the intensive peak due to the Ge-O bonding appears if the incorporated Ti^{4+} ions are in 4-fold coordination [7]. This hump is attributed to the desymmetrization of the $GeO₄$ tetrahedron due to the formation of mixed Ge-O-Ti bonds in the network. The hump, therefore, may not be placed at a constant wavenumber, but shifts along with the main peak due to Ge-O bonding. The hump is very small, and so the peak position for the Ge-O bonding is easily determined, making the state analysis of Ge^{4+} ions possible irrespective of the presence of Ti^{4+} ions.

As is clearly seen in Fig. 10, the wavenumbers of the Ge-O peak of the $TiO₂$ -containing germanate glasses are smaller than those of binary $Na₂O-$ GeO₂ glasses at the same Na₂O content. The amount of 6-fold Ge⁴⁺ ions, N_6 , can be estimated from the shift of the IR peak relative to the GeO₂ glass ($\Delta \nu$) using the following equation [10]:

$$
N_6 = \frac{(\Delta \nu - 3.0x) \times 100}{175} \tag{1}
$$

where the number, 3.0, in parentheses corresponds to the shift in cm^{-1} due to the mere addition of 1.0 mol % alkali oxide and x is mol % of the alkali oxide. The 175 in the denominator is the difference in peak position in cm^{-1} between the hexagonal GeO₂ and rutile type GeO₂. In Fig. 12 N_6 is plotted against Na₂O content for $(20-x)Na₂O$. $xTiO₂ \cdot 80GeO₂$ glasses, and is compared with that for the binary $xNa₂O \cdot (100-x)GeO₂$ glasses. It is noticed that more 6-fold coordinated Ge^{4+} ions occur in $Na₂O-TiO₂-GeO₂$ glasses than in $Na₂O-GeO₂$ glasses. As TiO₂ replaces GeO₂ in the $5Na₂O \cdot 95GeO₂$ glass, the wavenumber of Ge-O bonding slightly shifts towards the lower value, showing that N_6 slightly increases as the amount of substituting Ti^{4+} ions increases. These suggest that in $Na₂O-TiO₂-GeO₂$ glasses the coordination change of Ge^{4+} ions from 4-fold to 6-fold occurs

Figure 12 Variation of the content of 6-fold coordinated Ge⁴⁺ions with Na₂O content: \circ , xNa₂O · (100-x)GeO₂ glasses; \bullet , (20-x)Na₂O \cdot xTiO₂ \cdot 80GeO₂ glasses.

more preferably than that of Ti^{4+} ions does. In other words, Na₂O reacts more readily with a GeO₄ tetrahedron to form a GeO₆ octahedron than with TiO₄ to form TiO₆ in Na₂O-TiO₂-GeO₂ glasses of relatively large $TiO₂$ contents.

5. Summary

The coordination state of Ti^{4+} and Ge^{4+} ions in glasses of compositions of $(10-x)Na₂O \cdot xTiO₂$. $90GeO₂$, $(20-x)Na₂O \cdot xTiO₂ \cdot 80GeO₂$, $5Na₂O \cdot$ $xTiO₂ \cdot (95-x)GeO₂$ and $xTiO₂ \cdot (100-x)GeO₂$ has been investigated by using techniques based on the crystallization, X-ray absorption and IR absorption spectrometry. The following results have been obtained.

1. Upon crystallization of glasses, Ti^{4+} ions were incorporated into both metastable hexagonal GeO₂ and stable $Na₄Ge₉O₂₀$ type crystals. In the hexagonal GeO₂ and the Na₄Ge₉O₂₀ type crystals, Ti4+ions replace 4-fold and 6-fold coordinated Ge^{4+} ions, respectively.

2. The fraction of 4-fold and 6-fold coordinated $Ti⁴⁺$ ions in the crystallized glasses has been determined from (i) the content of the precipitated hexagonal $GeO₂$ and $Na₄Ge₉O₂₀$ type crystals and (ii) the amount of Ti^{4+} ions incorporated into each crystal determined from the lattice constant of the corresponding crystal. The fraction of 4-fold $Ti⁴⁺$ ions in the crystallized glasses of compositions $(10-x)Na₂O \cdot xTiO₂ \cdot 90GeO₂$ and $5Na₂O \cdot xTiO₂ \cdot$ $(95-x)GeO₂$ was 80 to 90%, independent of the TiO₂ content. For $(20-x)Na₂O \cdot xTiO₂ \cdot 80GeO₂$ glasses, the majority of Ti^{4+} ions were assumed to be in 6-fold coordination at small $TiO₂$ contents, and the fraction of 4-fold $Ti⁴⁺$ ions gradually increased up to over 90% as the $TiO₂$ content was increased.

3. The distribution of $Ti⁴⁺$ ions into two

coordination states in the crystallized glasses was regarded as a reflection of the starting glass from the viewpoint of stability of precipitating crystals in the temperature range used in the experiment.

4. It was confirmed by the X-ray absorption spectrum near the K-edge that 4-fold coordinated Ti^{4+} ions are abundant in glasses at large TiO_2/Na_2O ratios.

5. It has been found by IR spectroscopy that the amount of 6-fold coordinated Ge^{4+} ions was larger in $Na₂O-TiO₂ - GeO₂$ glasses than in binary $Na₂O-GeO₂$ glasses for the identical Na₂O content, suggesting that 4-fold coordinated Ge^{4+} ions change their coordination state to 6-fold more preferentially than 4-fold Ti^{4+} ions do when the TiO_2 content is large relative to the $Na₂O$ content.

6. It is concluded that Ti^{4+} ions are incorporated as 6-fold coordinated Ti^{4+} ions into Na_2O-GeO_2 glasses at small $TiO₂/Na₂O$ ratios. At high $TiO₂/Na₂O$ ratios, they may take a 4-fold coordination state, replacing 4-fold coordinated $Ge⁴⁺$ ions than in binary $Na₂O-GeO₂$ glasses. The following scheme may be obtained. The constituent $Na₂O$ reacts more readily with $TiO₄$ tetrahedra to form TiO₆ octahedra than it does with $GeO₄$ tetrahedra to form GeO_6 octahedra at small TiO_2/Na_2O ratios. On the contrary, $Na₂O$ reacts more preferentially with $GeO₄$ tetrahedra to form $GeO₆$ octahedra instead of making $TiO₆$ octahedra from $TiO₄$ tetrahedra at large $TiO₂/Na₂O$ ratios. This scheme of change in coordination state of $Ti⁴⁺$ ions is consistent with that for $Na₂O-TiO₂-SiO₂$ glasses.

Acknowledgements

This work has supported by Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture. The authors wish to thank Mr N. Nishihama and Mr Y. Miki for their assistance in the experiment.

References

- 1. N.J. KREIDL, in "Glass Science Technology", Vol. 1, edited by D. R. Uhlmann and N. J. Kreidl (Academic Press, New York, 1983) pp. 105-299.
- 2. J. WONG and C. A. ANGELL, "Glass Structure by Spectroscopy" (Marcel Dekker, New York, 1976).
- *3. B. V. J. RAO, Phys. Chem. Glasses4* (1963) 22-34.
- 4. K. TAKAHASHI, N. MOCHIDA and Y. YOSHIDA, *Yogyo-Kyokai-Shi* 85 (1977) 330.
- 5. T. HANADA and N. SOGA, J. *Non-Cryst. Solids* 38-39 (1980) 105.
- *6. P. C. SHULTZ,J. Amer. Ceram. Soc.* 59 (1976) 214.
- 7. S. SAKKA and K. KAMIYA, J. *Physique* 43 (1982) C9-235.
- *8. E.A. STERN, Phys. Rev. B* 10 (1974) 3027.
- 9. R.B. GREEGOR, F. W. LYTLE, D. R. SANDSTROM, J. WONG and P. C. SCHULTZ, Z *Non-Cryst. Solids* 55 (1983) 27.
- 10. S. SAKKA and K. *KAMIYA, ibid.* 49 (1982) 103.
- 11. S. SAKKA, *K. KAMIYA* and M. HAYASHI, *Bull. Inst. Chem. Res. Kyoto Univ.* 59 (1981) 172.
- 12. N. INGRI and G. LUNDGREN, *Acta Chem. Scand.* 17 (1963) 617.
- 13. K. KAMIYA and S. SAKKA, J. Mater. Sci. 15 (1980) 2927.
- 14. E.W. WHITE and H. A. McKINSTRY, *Adv. X-ray Anal.* 9 (1966) 376.
- 15. D.L. EVANS, J. *Non-Cryst. Solids* 52 (1982) 115.

Received 20 March and accepted 12 April 1984